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Abstract

The vibration characteristics of a submerged axially moving band are investigated by a numerical study. A geometrically

nonlinear axially moving band model is coupled to the acoustic fluid model and the periodic nonlinear problem is solved by

the Fourier–Galerkin–Newton (FGN) method. The nonlinear dynamic behaviour is examined through the dependences

between fundamental frequency, axial velocity and the amplitude of nonlinear free vibration. The results are compared

with the behaviour of an axially moving band in a vacuum as considered in the companion paper [H. Koivurova, Journal

of Sound and Vibration 320 (2009) 373–385]. In the subcritical speed range the system behaved as expected, in that the effect

of the surrounding air field reduced the fundamental frequency to about one fifth of the vibration observed in a vacuum. In

the supercritical speed range the effects of the surrounding air depended on the amplitude of vibration and its change with

increasing geometrical nonlinearity. With linear vibrations the fundamental frequency grows faster as a function of axial

velocity than in vacuum, but with nonlinear vibrations the increase in frequency is slower than in a vacuum at near-critical

velocities, but with a tendency to increase faster at higher velocities.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

There is a large class of industrial processes which involve the transport of bands and webs across spans.
From the point of view of mechanics, the translating structural members must have special characteristics with
regard to vibration and dynamic stability. The topic of axially moving material has been studied widely, and
recent research developments have been reviewed by Chen [1] and Paı̈doussis [2]. Our interest is in the topic of
nonlinear vibrations in an axially moving string, which has also received much attention. An extensive
literature overview can be found in companion paper [3].

The paper making process, for instance, often includes high-speed operations in which a thin, light web
interacts closely with the surrounding air flow, causing out-of-plane vibrations, or flutter. Theoretical and
experimental results show that the effects of the surrounding air on the dynamic behaviour of a paper web are
significant. According to the experimental results of Pramila [4], the critical velocities and natural frequencies
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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are only 15–30% of the values given by predictions that neglect the interaction between the paper sheet and
the surrounding air.

The first analyses of flutter in a moving web were performed by Pramila [5] and Chang et al. [6] using
analytical ‘‘travelling thread line’’ models but neglecting the cross-direction variation in web motion by
assuming that the entire web width deflects uniformly. The motion of the surrounding air was taken into
account as an ideal fluid in various added mass models. These analytical studies confirmed the importance of
the surrounding air for light webs and showed that it affects the eigenfrequencies and critical speed of the web.
The viscous flow of the air particles was included in the above model by Frondelius et al. [7], who
used an analytical model of a boundary layer on moving continuous flat surfaces to demonstrate
that the viscous boundary layer flow has a clear influence and that it grows with increasing axial velocity. The
drop in the critical speed of the system can be significant due to turbulent flow if the span length of the system
is high.

The dynamic behaviour of the interaction of a light structure with a surrounding air has been studied
widely, e.g. in Refs. [8–10], but systems which also include axial motion of the structure have rarely been
considered. In the first three dimensional studies the web was modelled as a linear membrane and the
surrounding air treated as an incompressible ideal fluid by Niemi and Pramila [11] and as a compressible ideal
fluid by Laukkanen and Pramila [12]. The geometrically nonlinear effect was included by Koivurova and
Pramila [13] when they used a nonlinear membrane element to model a narrow axially moving band
surrounded by air. The influence of air was accounted for with acoustic elements. Recently Kulachenko
et al. [14] used geometrically nonlinear Mindlin shell elements and an orthotropic material model for
the paper web and acoustic finite elements for modelling the surrounding air and showed that besides
reducing the eigenfrequencies of the web, the surrounding air suppresses wrinkled modes with a low modal
effective mass.

The aim of this work is to examine the subcritical and supercritical speed dynamics of an axially moving
narrow band by considering the interaction between the moving band and the surrounding air in terms of a
geometrically nonlinear structural model and a surrounding acoustic fluid. The equations of motion are
formulated using the structural model of axially moving string developed in Ref. [3] and an acoustic fluid
model for the surrounding air. The formulation of the problem leads to coupled equations of motion, but
because of the large fluid domain and its many degrees of freedom, the size of the nonlinear problem is
minimized by decomposition. The effect of the linear fluid domain is taken into account by means of the
structure motion-dependent fluid pressure at the fluid-structure interface of the band. Moreover, the system
matrices of the fluid domain are diagonalized by expressing them in terms of the modal coordinates. The
nonlinear dynamic behaviour of the structure is investigated by analysing the free and steady-state periodic
vibration of the geometrically nonlinear axially moving band. The periodic nonlinear problem is solved by the
Fourier–Galerkin–Newton (FGN) method according to Narayanan and Sekar [15]. The structural response to
harmonic excitations and the backbone curves of free vibration show that the nonlinearities and coupling
phenomena have a considerable effect on the dynamic behaviour of the system and can be seen clearly if we
compare the results with those applying to the system described in Ref. [3].

2. Theoretical formulation

The model of the system to be considered is shown in Fig. 1. The structural part, a light axially moving
band, is modelled with a geometrically nonlinear string element that neglects the cross-direction variation in
web motion by assuming that the entire web width deflects uniformly. The formulation of the structural model
is presented in the first part of this work [3]. The surrounding fluid is modelled as an acoustic fluid using
pressure formulation.

2.1. Acoustic fluid

The fluid is treated as a linear acoustic approximation, i.e. as a compressible, non-viscid, non-flowing
medium. These assumptions lead to the well-known Helmholtz equation as shown in Ref. [16], for instance.
Using a standard finite element procedure, the acoustic wave equations result in a set of discretized governing
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Fig. 1. Model of an axially moving narrow band in surrounding air.
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equations [16,17]. The pressure distribution in the fluid domain V is approximated by

pðx; y; zÞ ¼ NPp, (1)

where NP is the shape function vector of a linear three-dimensional isoparametric 8 node element, and p is the
nodal pressure vector. The discretized equation for the fluid domain V is then [16]

L€pþD_pþHp ¼ Fp, (2)

where the points denote derivates with respect to the time t and L is the fluid mass matrix

L ¼
1

c2

Z
V

ðNPÞ
TNP dV , (3)

where c is the wave speed in fluid, D is the ‘‘damping’’ matrix arising from the radiation boundary condition at
the cutting boundary At of the fluid

D ¼
1

c

Z
At

ðNPÞ
TNP dA, (4)

H is the fluid stiffness matrix

H ¼

Z
V

ðrNPÞ
T
rNP dV , (5)
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and Fp is the external force vector of the fluid domain at the interface surface Au

Fp ¼

Z
Au

ðNPÞ
T @p

@n
dA. (6)

The fluid domain V, the cutting boundary surface At and the interface surface Au are shown in Fig. 1.
2.2. Coupled equations of motion

The structural and fluid equations are coupled through their respective external force vectors [16]. The fluid
pressure p at the fluid–structure interface translates to an external traction on the structure in the direction of
the fluid normal n, and the force vector is

Fs ¼ STp. (7)

where S is the interaction matrix at the interface surface Au

S ¼

Z
Au

ðNPÞ
TnNdA (8)

and N is shape function matrix of the structural part, the geometrically nonlinear string element defined in
Ref. [3]. The structural acceleration at the interface nodes €q translates to the normal derivative of pressure on
the fluid, and the force vector at the interface with the fluid is

Fp ¼ �rf S€q, (9)

where rf is fluid density. The coupling between the 3D fluid and string entails the assumption that the entire
band width deflects uniformly, and therefore two nodes of the fluid in the width of the band are coupled to a
spring node, as shown in Fig. 1. By defining Au as the structural and fluid surface at the interface, the finite
element equations for the coupled system can be expressed with the help of Ref. [3] as

M 0

rf S L

" #
€q

€p

( )
þ

C 0

0 D

� � _q

_p

( )
þ

KðqÞ �ST

0 H

" #
q

p

( )
¼

FðtÞ

0

� �
, (10)

where q is the vector with the nodal structural displacements of the axially moving string, M is the mass
matrix, C is the damping matrix, K(q) is the nonlinear stiffness matrix of the axially moving string and F is the
force vector of the axially moving string.
3. Periodic solution for the coupled system

The dynamic response of the system is assumed to be periodic with a frequency of o. Using non-
dimensional time t ¼ ot, the equation of the motion, Eq. (10) becomes

o2Mcx
00 þ oCcx

0 þ KcðqÞx ¼ FcðtÞ, (11)

where the primes denotes derivates with respect to the non-dimensional time t and subscript c denotes that the
terms are matrices and vectors of the coupled fluid–structure interaction system shown in Eq. (10) and
x contain the displacement of the string and the pressure of the fluid field. Following the FGN procedure
described in Ref. [3], the equation of motion is obtained as

KDX ¼ R� RoDo, (12)

where

K ¼ o2
0Mc þ o0Cc þ KcT ðq0Þ,

R ¼ Fc � ½o2
0Mc þ o0Cc þ Kcðq0Þ�X,
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Ro ¼ ð2o0Mc þ CcÞX, (13)

Mc;Cc; KcT and Fc are obtained either through FFT or DFT, as shown in Ref. [3].

3.1. Modelling the fluid as a pressure loading

The above formulation of the problem leads to the coupled equations of motions Eq. (12), but because of
the large fluid domain and its many degrees of freedom, the size of the problem is minimized by decomposing
it into a nonlinear structural part and a linear fluid part, and the equation of motion Eq. (11) becomes

o2Mq00 þ oCq0 þ KðqÞq ¼ STpþ FðtÞ,

o2Lp00 þ oDp0 þHp ¼ �o2rf Sq
00. (14)

Since a periodic solution is sought, the solution p is represented as Fourier series, i.e.

p ¼ P0 þ
XM
j¼1

½P2j�1 cosðjtÞ þ P2j sinðjtÞ�; (15)

where P0 and Pj’s are Fourier coefficients and M represents the number of harmonics.
Following the Galerkin procedure described in Ref. [3] for the fluid part of the governing equation in

Eq. (14), the following expression is obtained in the frequency domain:

KpðoÞP ¼ Fpðo; q00Þ, (16)

where

KpðoÞ ¼ o2Lþ oDþH, (17)

Fp is the external force vector due to structural acceleration at the same interface as in Eq. (9), i.e.

Fp ¼ �orf Sq
00, (18)

and P ¼ {P0, P1,y, P2M}T. The force vector of the structural part at the fluid–structure interface attributable
to the fluid pressure can be obtained by substituting Eqs. (16) and (18) into Eq. (7), and is

Fs ¼ �o2rf S
TK�1p Sq00. (19)

By substituting Eq. (19) into the structural part of Eq. (14) the governing equation of the system becomes

o2Mq00 þ oCq0 þ KðqÞqþ o2rf S
TK�1p Sq00 ¼ FðtÞ. (20)

Using the Newton–Raphson procedure with Taylor series expansion and the incrementation q ¼ q0 þ Dq and
o ¼ o0 þ Do, we obtain the linearized incremental equation

o2MDq00 þ oCDq0 þ KT ðqÞDqþ o2rf S
TK�1P SDq00

¼ R� ð2o0Mq000 þ Ccq
0
0 þ 2orf S

TK�1P Sq000ÞDo, (21)

where the residual is

R ¼ FðtÞ � ½o2
0Mq000 þ o0Cq

0
0 þ Kðq0Þq0 þ o2rf S

TK�1p Sq000 �. (22)

Following the FGN procedure described in Ref. [3] for the Eq. (21), the equation of motion is obtained in
which the effect of the surrounding air is taken into account by means of the structure motion-dependent fluid
pressure at the fluid-structure interface of the band.

From Eq. (17) it can be seen that the matrix Kp is dependent on the frequency o, and therefore the inverse of
Kp should calculate every iteration of a Newton–Raphson procedure in terms of changes in the frequency o.
In order to reduce the computation, the equations for the fluid domain are transformed to modal coordinates, i.e.

UTLU ¼ K,
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UTDU ¼ D,

UTHU ¼ H,

UTS ¼ R, (23)

where U is the matrix of the L-orthogonal eigenvectors of the fluid domain, K is the diagonal matrix of the
modal masses, D is the diagonal matrix of the modal damping due to the radiation boundary condition at the
cutting boundary At, H is the diagonal matrix of the modal stiffnesses and R is the transformed interaction
matrix. The transformation will reduce Kp of Eq. (21),

UTKpU ¼ o2Kþ oDþH, (24)

to the diagonal form and calculation of the inverse of the matrix is replaced by divisions of the diagonal terms.
4. Results

4.1. Verification

It is quite difficult to verify the overall accuracy of the model because there are only a few experimental
results which consider axially moving bands and these are limited to a linear range of displacement. Pramila [4]
measured the fundamental frequencies of a narrow paper web using a pilot coater with a web length of
L ¼ 2.4m, width of b ¼ 0.47m and weight per unit length of m ¼ 17 g/m. These values are used in the current
model for an axially moving narrow band with the simple fixed supports and the dimensions and boundary
conditions of the air domain given in Niemi and Pramila [11] and Laukkanen and Pramila [12]. The following
additional parameters are used: thickness of the band h ¼ 0.49mm, initial tension T0 ¼ 170N and Young’s
modulus E ¼ 1� 109N/m2.
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Fig. 2. Non-dimensional fundamental frequency F as a function of non-dimensional axial velocity Va.
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The results of the analysis of free vibration in the case of the numerical model and the experiments
performed by Pramila [4] are shown in Fig. 2. The two dashed lines represent analytical results of Pramila [5],
in which the surrounding air is described using two different added mass models. For the sake of clarity the
results are shown in non-dimensional form, where the frequency is presented relative to the fundamental
analytical frequency fl0 and the axial velocity relative to the critical velocity va(cr). These are defined as follows:

F ¼ f 2L

ffiffiffiffiffiffi
m

T0

r
¼ f =f l0, (25)

Va ¼ va

ffiffiffiffiffiffi
m

T0

r
¼ va=vaðcrÞ. (26)

The same non-dimensional presentation is used for all the following analyses. The current results shown in
Fig. 2 are in good agreement with the analytical results of when interaction with the air is taken into account.
Also the few measured points confirm the current results.

4.2. Effects of decomposition and modal superposition of the model

Solution of the nonlinear problem in the coupled fluid–structure interaction model is labourious, because
the fluid model is large. The response of a harmonic force situated in the middle of the simply supported
axially moving band is solved with the coupled fluid–structure interaction model in Fig. 1 by using the same
parameters as for the linear verification application above when the non-dimensional velocity is Va ¼ 0.5. The
response curves are shown in Fig. 3. The curve AB is used as a basis for comparing the decomposition and
modal superposition models explained in Section 3.1. At the same time we have considered the effect of
boundary damping on the air domain. The percentual difference in frequency between the base curve of the
fully coupled model and the other models with and without boundary damping is presented as a function of
non-dimensional amplitude in Fig. 4. If we examine the full model we can see that the boundary damping
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increases the frequencies. This is an abnormal influence of damping on the normal structure, but for the
coupled system the fluid–structure coupling operates through mass and stiffness, as shown in Eq. (10), and the
cause and effect relation is not so simple. By comparing the full model with the decomposition and modal
superposition models we see that without boundary damping they give accurate results with almost no
difference between them. The use of the boundary damping clearly produces errors both in decomposition and
in modal superposition, but these still remain less than one percent. The results of the modal superposed
model are calculated in Fig. 4 by taking into account all the modes of eigenvalue analysis of the fluid domain,
while the effect of the number of modes on the results is presented in Fig. 5. It is evident that accuracy
demands the use of all the fluid domain eigenmodes.

The cpu times required for the different models are shown in Table 1. The fluid model includes 2860 degrees
of freedom, the structure model 22 and the number of harmonic terms in the Fourier series is chosen to be 8.
This means that the nonlinear equations have 48 994 degrees of freedom. Decomposition of the model into a
linear fluid model and a nonlinear structure as explained in Section 3.1 will reduce the cpu time to one
hundredth and modal superposition including all the modes will reduce it to one thousandth. It was found
here that modal analysis needs to be done only once for the fluid model, so that it is not taken into account in
the comparison.

4.3. Fundamental frequency of free vibration

The nonlinear dynamic behaviour of an axially moving band with surrounding air is examined through the
dependences between fundamental frequency, axial velocity and the amplitude of nonlinear free vibration. The
results are also compared with the behaviour of the same system in a vacuum as studied in the first part of this
paper [3]. The parameters used are the same as in previous applications. The number of harmonics in the
Fourier series is chosen on the basis of the value of the error estimate e2 as presented by Narayanan and Sekar
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Table 1

The cpu-times of the different model solutions.

Model cpu-time (s)a

Full coupled 86 873

Decomposed 862

Decomposed and mode superposed (378)

Modal analysis (294)

Periodic solution 84

aMatlab R2007b, Dell PowerEdge R900 with four 2.4GHz quad core Xeon (E7330) and red Hat 4 AS.
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[15] to indicate the magnitude of higher harmonic coefficients beyond the harmonic number. The criteria used
for increasing the harmonic terms was e2 ¼ 0.1, which led to numbers of harmonics between 4 and 32.

The backbone curves describing the relation between the non-dimensional amplitude ( ¼ A/L) of vibration
and the non-dimensional fundamental frequency at different non-dimensional axial velocities are shown in
Fig. 6. The curves for the system with air included do not differ much in shape at subcritical velocities (Vao1)
from those of the system in a vacuum as shown in Fig. 5 of Ref. [3], as both systems behave in the manner of a
nonlinear hard spring, but the magnitude of the frequencies was reduced to about one fifth, as observed in
earlier linear studies (see Refs. [5,11]). In the supercritical velocity range (Va 41), however, the surrounding
air has a much stronger influence on both the shapes and the magnitudes of the backbone curves. The system
is still softening, but the effect of the surrounding air is the inverse of that observed at subcritical velocities as
far as low amplitude values are concerned. The frequency of free vibration at the linear limit (A/L ¼ 0) is
F ¼ 0.17 at an axial velocity Va ¼ 1.03 in air, while it is F ¼ 0.1 for Va ¼ 1.05 in a vacuum [3]. Thus the
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surrounding air seems to increase the linear vibration frequency in the supercritical velocity range. The
dynamic behaviour changes, however, as the amplitude, and therefore the geometrically nonlinear effect,
increases. The fundamental frequency decreases with the influence of the surrounding air, so that given an
axial velocity Va ¼ 1.4, the frequency of free vibration at an amplitude of A/L ¼ 0.01 is F ¼ 0.127 in air
whereas it is F ¼ 0.51 in a vacuum [3]. The same phenomenon can also be seen in Fig. 8.

The relations between vibration amplitude and axial velocity at different fundamental frequencies are
shown in Fig. 7. These are similar to the corresponding ones for a band in a vacuum as seen in Fig. 6 of
Ref. [3], so that the nonlinearity bends the curves to the right at subcritical velocities, increasing the axial
velocity in very much the same way. The behaviour at low axial velocities and higher amplitudes is also
similar. There is a limit on the frequency (F ¼ 0.221) beyond which the lower amplitude ranges are not
obtainable. The small amplitude vibration, implying linear behaviour, changes only slightly in the supercritical
velocity range, but the frequencies of free vibration increase much more rapidly as the axial velocity increases,
and an alteration in behaviour occurs as the amplitude, and therefore also the nonlinearity, becomes greater.
The nonlinearity seems to compensate for the influence of the surrounding air.

The relation between axial velocity and the fundamental frequency of free vibration both in air and in a
vacuum is presented in Fig. 8. In the subcritical velocity range the behaviour is as expected in both cases, the
magnitude of the frequencies was reduced to about one fifth due to the surrounding air domain, as in earlier
linear studies [5,11,12] and as presented in Fig. 6. The critical velocity increases slightly due to the combined
effect of the surrounding air and the geometrical nonlinearity. In the supercritical velocity range, however, the
behaviour is complex, being dependent on the extent of nonlinearity; where the change in the fundamental
vibration frequency as a function of axial velocity for the band in a vacuum depends only slightly on the
amplitude and therefore on the geometrical nonlinearity, this dependence is very strong in the case of a band
in air. With small vibration amplitudes, implying linear behaviour, the vibration frequencies increase rapidly
as a function of axial velocity, while at increased amplitudes, and at the same time increased geometrical
nonlinearity, the slope of the curve tangents decreases markedly so that they are clearly below the values for
the vacuum case at near-critical velocities but slope become steeper at increased velocities.
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The vibration modes of the fundamental frequency at three axial velocities and two amplitudes are
presented in Fig. 9, the nonlinear A/L ¼ 0.01 and the linear A/L ¼ 0, except at velocity Va ¼ 1.4, where the
lower amplitude is A/L ¼ 0.0078. The points of the modes are marked with ‘O’ in Fig. 6. The modes do not
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Fig. 9. Deflection shapes of the first mode of an axially moving band at axial velocities: (a) Va ¼ 0, (b) Va ¼ 0.60, (c) Va ¼ 0.99 at

amplitude A/L ¼ 0.01 (- - -) and linear case at A/LE0 (—). In (d) Va ¼ 1.40 at amplitude A/L ¼ 0.01 (- - -) and at A/L ¼ 0.0078 (—).
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change so much on account of the surrounding air at subcritical velocities, cf. the modes given in Fig. 9 of
Ref. [3], but show the behaviour characteristic of an axially moving material, in that the transverse vibration
does not have a constant spatial phase. The phase shift becomes more apparent as the transport velocity
increases, and this trend continues into the supercritical speed range. The most notable differences in mode
between the cases with and without surrounding air can be found near the critical velocity (Va ¼ 0.99), where
the phase shift weakens at higher amplitudes, and at supercritical velocities, where the phase shift strengthens
overall.

5. Conclusions

The vibration characteristics of a submerged axially moving band are investigated. A geometrically
nonlinear axially moving band model is coupled to the acoustic fluid model and periodic nonlinear problem is
solved by the Fourier–Galerkin–Newton (FGN) method. Verification of the model shows that the method
is capable of describing the dynamic behaviour of a vibrating system. The nonlinear dynamic behaviour is
examined through dependences between fundamental frequency, axial velocity and the amplitude of nonlinear
free vibration. The results are compared with the behaviour of the same system in a vacuum as considered in
the companion paper [3]. In the subcritical speed range the system behaves as expected in both the linear and
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nonlinear case, the effect of the surrounding air field reducing the frequency to about one fifth, as noted in
earlier linear studies. The critical velocity itself increases slightly due to combined effect of the surrounding air
and the geometrical nonlinearity. In the supercritical speed range the effects of the surrounding air depend on
the amplitude of vibration, and therefore on the increase in geometrical nonlinearity. With linear vibrations
the fundamental frequency grows faster as a function of axial velocity than in a vacuum, while with nonlinear
vibrations the growth in frequency is slower than in a vacuum at near-critical velocities, but with a tendency
for a faster increase in frequency at higher velocities.

It should be mentioned that the present investigation was devoted to analysing mainly the influence of
aerodynamic loading on geometrically nonlinear vibration in an axially moving band. Further efforts would
be needed to study the effects of the nonlinear fluid model and viscous boundary flow.
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